行星运动的Lagrange函数
动能项:
\[
T = \frac{1}{2}m(v_{x}^{2}+v_{y}^{2}) = \frac{1}{2}m(\dot{x}^{2}+\dot{y}^{2})
\]
势能项:
\[
V = -\frac{k^{2}m}{r}\hspace{0.4cm}(r = \sqrt{x^{2}+y^{2}})
\]
$k^{2}=Gm_{s}$是一个与行星无关的量,叫做高斯常数
则Lagrange函数:
\[
L=T-V=\frac{1}{2}m(\dot{x}^{2}+\dot{y}^{2}) + \frac{\alpha}{r}\hspace{0.4cm}(\alpha = Const)
\]
Lagrange方程
将Lagrange函数带入到Lagrange方程,有:
\[
\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0
\]
分别令$q=x,q=y$,即
\[
\begin{equation}
\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = 0
\end{equation}
\]
\[
\begin{equation}
\frac{d}{dt}\frac{\partial L}{\partial \dot{y}} - \frac{\partial L}{\partial y} = 0
\end{equation}
\]
运动方程
\[
\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = 0
\]
式中,$\frac{\partial L}{\partial \dot{x}} = m\dot{x}$, 则$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}}=m\ddot{x}$, $\frac{\partial L}{\partial x} = -\alpha x(x^{2}+y^{2})^{-\frac{3}{2}}$
则:
\[
\begin{equation}
m\ddot{x} + \frac{\alpha x}{(x^{2}+y^{2})^{\frac{3}{2}}} = 0
\end{equation}
\]
同理,有:
\[
\begin{equation}
m\ddot{y} + \frac{\alpha y}{(x^{2}+y^{2})^{\frac{3}{2}}} = 0
\end{equation}
\]
此即二维直角坐标系下的行星运动方程
请给我打钱,谢谢!