刚体的动量矩
假设刚体在某一时刻以角速度$\omega$作定点转动,取任一质点$P_{i}$,对$O$的位矢是$r_{i}$,设它的速度为$v_{i}$,质量为$m_{i}$,则$P_{i}$对定点$O$的动量矩为:
\[ \begin{equation}
r_{i}\times m_{i}v_{i}\
\end{equation}
\]
式中,$v_{i} = \omega \times r_{i}$
整个刚体对$O$点的动量矩为:
\[ \begin{equation}
\begin{split}
J &= \sum_{i=1}^{n}(r_{i}\times m_{i}v_{i})\\
&=\sum_{i=1}^{n}m_{i}[r_{i}\times (\omega \times r_{i})] \\
&=\sum_{i=1}^{n}m_{i}[\omega r_{i}^{2}-r_{i}(\omega \cdot r_{i})]
\end{split}
\end{equation}
\]
用矢量分量的形式来表示$J$
\[
r_{i} = x_{i}i+y_{i}j+z_{i}k,
\hspace{0.2cm}\omega = \omega_{x}i+\omega_{y}j+\omega_{z}k
\]
所以有:
\[
\begin{equation}
\begin{split}
J_{x} &= \sum_{i=1}^{n}m_{i}[\omega_{i}(x_{i}^{2}+y_{i}^{2}+z_{i}^{2})-x_{i}(\omega_{x}x_{i}+\omega_{y}y_{i}+\omega_{z}z_{i})]\\
&=\omega_{x}\sum_{i=1}^{n}m_{i}(y_{i}^{2}+z_{i}^{2})-\omega_{y}\sum_{i=1}^{n}m_{x}x_{i}y_{i}-\omega_{z}\sum_{i=1}^{n}m_{i}x_{i}z_{i}
\end{split}
\end{equation}
\]
同理:
\[
\begin{equation}
J_{y} = \omega_{y}\sum_{i=1}^{n}m_{i}(x_{i}^{2}+z_{i}^{2})-\omega_{x}\sum_{i=1}^{n}m_{x}x_{i}y_{i}-\omega_{z}\sum_{i=1}^{n}m_{i}y_{i}z_{i}
\end{equation}
\]
\[
\begin{equation}
J_{z} =
\omega_{z}\sum_{i=1}^{n}m_{i}(x_{i}^{2}+y_{i}^{2})-\omega_{x}\sum_{i=1}^{n}m_{x}x_{i}z_{i}-\omega_{y}\sum_{i=1}^{n}m_{i}y_{i}z_{i}
\end{equation}
\]
惯量张量
引入符号:
\[
\begin{equation}
\begin{split}
I_{xx} &= \sum_{i=1}^{n}m_{i}(y_{i}^{2}+z_{i}^{2})\\
I_{yy} &= \sum_{i=1}^{n}m_{i}^(x_{i}^{2}+z_{i}^{2})\\
I_{zz} &= \sum_{i=1}^{n}m_{i}(x_{i}^{2}+y_{i}^{2})
\end{split}
\end{equation}
\]
\[
\begin{equation}
\begin{split}
I_{yz} =I_{zy} &= \sum_{i=1}^{n}m_{i}y_{i}z_{i}\\
I_{zx} =I_{xz} &= \sum_{i=1}^{n}m_{i}z_{i}x_{i}\\
I_{xy} =I_{yx} &= \sum_{i=1}^{n}m_{i}x_{i}y_{i}
\end{split}
\end{equation}
\]
带入到各分量之中有:
\[
\begin{equation}
\begin{split}
J_{x} &= I_{xx}\omega_{x}-I_{xy}\omega_{y}-I_{xz}\omega_{z}\\
J_{y} &= I_{yy}\omega_{y}-I_{yx}\omega_{x}-I_{yz}\omega_{z}\\
J_{z} &= I_{zz}\omega_{z}-I_{zx}\omega_{x}-I_{zy}\omega_{y}
\end{split}
\end{equation}
\]
把三个轴转动惯量和六个惯性积(只有三个是独立的)作为一个统一的物理量,来表示刚体转动时惯性的量度
可以写成矩阵的形式:
\[
\begin{equation}
\begin{gathered}
\begin{bmatrix}
J_{x}\\
J_{y}\\
J_{z}
\end{bmatrix}
\end{gathered}
=
\begin{gathered}
\begin{bmatrix}
I_{xx} & -I_{xy} & -I_{xz}\\
-I_{yx} & I_{yy} & -I_{yz}\\
-I_{zx} & -I_{zy} & I_{zz}\\
\end{bmatrix}
\end{gathered}
\begin{gathered}
\begin{bmatrix}
\omega_{x}\\
\omega_{y}\\
\omega_{z}
\end{bmatrix}
\end{gathered}
\end{equation}
\]
把该矩阵叫做对$O$点的惯性张量,对角元素分别是刚体绕$x$轴、$y$轴、$z$轴的转动惯量,其他元素称为惯量积
取惯量主轴时的动量矩
对于式(7),是可正可负也可为零的,取决于坐标系的选定
例如:对一圆柱体,如果将圆柱体的轴线作为$z$轴,那么式(7)均为0
能使惯量张量的三个惯量积均为0的坐标轴称为惯量主轴
从而可以使动量矩简化为:
\[
\begin{equation}
\begin{gathered}
\begin{bmatrix}
J_{x}\\
J_{y}\\
J_{z}
\end{bmatrix}
\end{gathered}
=
\begin{gathered}
\begin{bmatrix}
I_{xx} & 0 & 0\\
0 & I_{yy} & 0\\
0 & 0 & I_{zz}\\
\end{bmatrix}
\end{gathered}
\begin{gathered}
\begin{bmatrix}
\omega_{x}\\
\omega_{y}\\
\omega_{z}
\end{bmatrix}
\end{gathered}
\end{equation}
\]
即:
\[
\begin{equation}
J = I_{xx}\omega_{x}i+I_{yy}\omega_{y}j+I_{zz}\omega{z}k
\end{equation}
\]
从而刚体的动能可以表示为:
\[
\begin{equation}
T = \frac{1}{2}J\cdot \omega = \frac{1}{2}(I_{xx}\omega_{x}^{2}+I_{yy}\omega_{y}^{2}+I_{zz}\omega_{z}^{2})
\end{equation}
\]
由式(11)可推出Euler动力学方程
请给我打钱,谢谢!
- 本文链接:http://ayitido.github.io/2022/05/13/%E6%83%AF%E9%87%8F%E5%BC%A0%E9%87%8F/
- 版权声明:本博客所有文章除特别声明外,均默认采用 许可协议。